TDA Progress Report 42-68

January and February 1982

An Automated FORTRAN Documenter

T. Erickson
Tracking Systems and Applications Section

We have written a set of programs designed to help R&D programmers document
their FORTRAN programs more effectively. The central program reads FORTRAN
source code and asks the programmer questions about things it has not heard of before.
It inserts the answers to these questions as comments into the FORTRAN code. The
comments, as well as extensive cross-reference information, are also written to an unfor-
matted file. Other programs read this file to produce printed information or to act as

an interactive document,

. Introduction

Documentation is a continuing problem in software devel-
opment: programmers don’t like to produce it, much of it is
never used, it takes up shelf space, time, and nervous energy.
Yet we can’t get along without it. We too easily forget how
programs are put together and how to run them. After a week

away from a program, undocumented variable names and sub- -

routine calls may seem like hieroglyphics even to their well-
intentioned author.

One solution has been to insist that programmers adhere to
strict documentation standards in spite of the time required
and the paper produced. Every routine must be flowcharted,
every variable explained. This has been applied to implementa-

78

tion programming with some success, but it has never gained a
foothold with programmers doing research and development
(R&D).

Programs produced in an R&D environment still tend, as a
rule, to be documented poorly. We cannot possibly calculate
the time lost in program development due to forgetting, or the
time lost when maintenance or implementation programmers
can’t figure out what the original author meant. Just why
R&D programmers are so resistant to standardized program-
ming practices is not clear. It may be their varied backgrounds:
they can’t be fit into the same molds. Maybe it’s their aca-
demic histories: the programming techniques needed for thesis
research seldom require documentation for other users or
maintenance programmers. Perhaps it’s natural stubbornness




reacting to a “waste of time,” or the eagerness to get on to the
next problem “now that this routine is working.” As to flow-
charting routines before coding, the R&D programmer often
does not know what algorithm is going to solve a problem best
until the program runs.

Whatever the reasons for poor R&D documentation, some-
thing must be done, RNDOC (an R&D DQOCumenter) and its
family are interactive tools especially designed to help R&D
programmers document their programs effectively and pain-
lessly. It is designed first to help the programmer remember
things that need remembering. Later versions will pay more
attention to the needs of other programmers and the users of
the programs.

ll. How RNDOC Works

RNDOC is the name of the central program in this set of
tools. It actually reads the FORTRAN code being documented;
the other tools require output from RNDOC as well. It’s being
developed in FORTRAN 77 on a VAX 11/780 under the VMS
operating system, It can be used to document programs written
in FORTRAN and Structured FORTRAN. We will discuss its
portability to other computers and other languages later.

RNDOC is basically a simple parser that decomposes lines
of code into FORTRAN symbols and constants. We should
briefly discuss the structures RNDOC can currently recognize
in FORTRAN code. The first structure RNDOC recognizes is
the whole program, whose name it gets from the user or from
a PROGRAM statement. The program consists of one or more
modules (functions, subroutines, and the main program),
which in turn reside in one or more regions on the disk called
files. Files may contain more than one module. For each
module it encounters, RNDOC records the file it is in, so that
it (and the user) will always know where to find the code. This
is very simple, but even this saves time for a forgetful program-

mer. Within modules, RNDOC identifies arguments, common -

areas, I/O units, declared variables, and undeclared variables.
For example, in the FORTRAN 77 code fragment

In file PRIME.FOR:

PROGRAM Prime
implicit integer (a-z}
dimension primes(1000)

SUBROQUTINE DISPLAY (lun)
character*6 symb
integer lunlim, x(10)
common/DISCOM/
DO i = lun, lunlim
write (i, 100) x, symb (x(10))
END DO

lunlim, x

RNDOC will recognize the beginning of module DISPLAY, its
argument lun, the common area DISCOM, the declared vari-
ables lunlim and x, which are also recognized as an array, the
undeclared variables i and lun, the I/O unit lun, and the func-
tion symb. It will also record obvious relationships between
these names: DISCOM is found in DISPLAY, symb is called by
DISPLAY, lunlim and x reside in DISCOM, i is local to DIS-
PLAY, and so forth. To carry the example further, if RNDOC
has not yet heard of symb, it will ask the user for a comment.
Now RNDQC knows that the program uses the module symb,
though it will not know what file symb is in until it comes
across

Character*6 FUNCTION Symb(j)

The user can set RNDOC to prompt for comments at various
levels; RNDOC always requires comments for modules and
arguments, but the user can choose whether to comment
every variable. Furthermore, the user can “table” or postpone
commeénts, or get a display of the section of code where a
symbol was found.

At the end of a module, when RNDOC encounters a
FORTRAN “END” statement, the user may quit, leaving
RNDOC, or continue to other modules in the file. At the
end of the file, the user can choose to write a new copy of the
code with all new comments in place. Figure 1 shows sche-
matically how RNDOC works.

lll. An Example

Imagine that we have written a FORTRAN program to
calculate primes. It looks like this:

call getnum(n, ‘How many primes do you want to calculate?’)

primes(l) = 2
DO i=2, n

call FindNextPrimel(i, primes)

END DD

79




write(h, 100) n,primasin)

100 format(’ prime number /,i8, ' is ‘, 16)
call getnum(m, ‘"How many primes do you want to type out?’)
DO i=1,m
Writel(d, 100)i, primesli)
END DO
call exit
end

SUBROUTINE getnumin, string)
character#(#) string
write (& 100) string

100 format(’‘$’, a, x)
read (9, ‘(i10)’) n
return
end

In file PRIMESUB.FOR:

SUBROUTINE FindNextPrime(i,Primes)
implicit integer (a-z2}
dimension primes(l)
logical®l IsTestPrime
test = primes(i—1)
DO WHILE (. true.)
test = test + 1
IF (IsTestPrime(test,primes, i)) THEN
primes(i) = test
return
ENDIYF
END DO
END

LOGICAL#*L FUNCTION IsTestPrime(test, primes, i)
implicit integer (a-z)
dimension primes(1)
DO =1, i~
IF (mod(test,primes(y)) .eq. Q) THEN
IsTestPrime = . false.
return
ELSE IF {(primes(j)##2 . gt. test) THEN
IsTestPrime = | true.
return
ENBIF
END DO
IsTestPrime = . true.
return
END

This program has been deliberately broken into subroutines control-Z is the end-of-file character, and will be indicated by
for the purposes of this example. Let’s see how parts of an [~Z].
RNDOQC session would look at the terminal. In the following
example, boldface text is typed by the user. Annotations
appear in italics in the right hand column. On the VAX, enter name of program: PRIME

$ run mdoc

80




do you want to skip old comments? yes

Do you want to document variables other than arguments?
no

CREATING A NEW DOCUMENTATION FILE: prime.rnd

------------ CURRENT STATUS - -~ ==nm=mmm e m
------------ UNFOUND MODULES:

nnano
1iULIv

Enter filename (ctrl-z to quit, SYS for system): prime.for

FOUND a reference to your main program, PRIME:
PROGRAM PRIME

Type in your comment (ctrl-z ends):

This is a program to calculate the first “n”™ primes, where “n”
is a parameter typed in by the user. [~Z].

OKAY. Thanks.

—————————— ENTERING MODULE PRIME
FOUND a reference to the routine GETNUM:

call getnum (n, ‘How many primes do you want to calculate?”)
Type in your comment (ctrl-z ends):

This routine gets an integer from the keyboard, prompting the
user with the string argument, [~Z]

OKAY. Thanks.

END encountered in module PRIME.
Do you want to quit looking at PRIME, FOR? no

————————— ENTERING MODULE GETNUM
Reconciling variables in module GETNUM:
We need a comment for variable “n” in module GETNUM.
Type in your comment (ctrl-z ends):

OUTPUT: the number returned as data to the calling program.
°Z]
OKAY. Thanks.

We need a comment for variable “string” in module GETNUM.
Type in your comment (ctrl-z ends):

INPUT: the string used to prompt the terminal for the
number. ["Z]

RNDOC hasn't ever seen program PRIME before; it needs to
create a new unformatted documentation file. Qur next ses-
sion will begin by reading the file we create here.

RNDOC types the line of code where the reference is found.

RNDOC rypes the line of code where the reference is found.

If we had answered simply with a control-z, RNDOC would
have typed the section of code surrounding the reference. This
goes on, getting comments for modules FindNextPrime and
Exit, until. . .

Routine GETNUM is in the same file as PRIME, the main pro-
gram. As weve dalready commented this routine, and have
asked to skip old comments, it doesn’t ask us about it.

At the end of the module, RNDOC checks its list of variables
to see which need commenting. Though we asked not to be
bothered about ALL variables, it always requires comments
for arguments.

81




OKAY. Thanks.

END encountered in module GETNUM.

Do you want to quit looking for PRIME.FOR? no
END OF FILE found in PRIME.FOR.

Do you want to write a new copy of it? Yes

———————————— CURRENT STATUS -------------—~
———————————— UNFOUND MODULES:
FINDNEXTPRIME
EXIT
2 modules in all

enter filename (ctrl-z to quit, SYS for system):
primesub.for
—————— ENTERING MODULE FINDNEXTPRIME

FOUND a reference to some FUNCTION named INTEST-
PRIME:

IF (IsTestPrime(test,primes,i)) THEN

Type in your comment (ctrl-z ends):

END OF FILE found in PRIMESUB.FOR,

Do you want to write a new copy of it? Yes

———————————— CURRENT STATUS --wc--memmmm = -
———————————— UNFOUND MODULES:
EXIT
MOD
2 modules in all

enter filename (ctrl-z to quit, SYS for system):
SYS

Is EXIT a system routine? yes

Is MOD a system routine? yes

------------ CURRENT STATUS ~---=-==~===-=-~
———————————— UNFOUND MODULES:

enter filename (ctrl-z to quit, SYS for system): [~Z]

and we are done.

82

Here RNDOC writes the new copy of the code, which can be
seen on the following page.

This module was commented when its call was found in the
main program., We aren’t asked now, but RNDOC records that
this module is found in file PRIMESUB.FOR.

This continues until the end of file, including comments for
arguments.

The remaining “unfound’ modules can be flagged as system
routines.




Here is what the rewritten code looks like:

NeAPNNNANRNNANANON00

100

NENR00006N0000NNN0DD

100

PROGRAM Prime

MODULE PRIME
This is a program to calculate the ®ivrst '"n" primes, where

"n" is a parameter typed in by the user.
....... ARGUMENTS. . .. ... . i
——none—-—
....... MODULES CALLED. .. ... ... ... ... . oo
EXIT closes all files and stops execubtion.
FINDNEXTPRIME updates a list of the first (i-1) primes by

putting the ith prime in position i.

GETNUM This routine gets an integer from the keyboard,

prompting the user with the string argument.

....... COMMON BLOCKS. . ... ... ... .. .........

~=none--—

processed by RNDOC 20-0CT-81 10:28:21 for program PRIME
implicit integer (a-z)
dimension primes(1000) )
call getnum(n, ‘How many primes do you want to calcuvlate?”)
primes(1) = 2
DO i=2, n
call FindMextPrime(i, primes)
END DO
write(&, 100) n, primes(n)
format(‘ prime number ‘, iS5, ‘7 is ‘), ib)
call getnum(m, ‘How many primes do you want to type out?”)
DO i=1,m
Write(é, 100)i, primes{i)

END DO
call exit
end

SUBROUTINE getnum(n, string)

MODULE GETNUM
This routine gets an integer from the keyboard. praoampting
the user with the string argument

....... ARGUMENTS. . . . . . . e
QUTPUT: the number returned as data to the
calling program.
STRING INPUT: the string used to prompt the terminal

for the number.

....... MODULES CALLED. . ... ... ... .. i

~—none-——

....... ENTRY POINTS. ... . ... .. e

——none-—-—

....... COMMON BLOCKS. ......... ... . ... ...

~-none-—-—

processed by RNDOC 20-0CT-81 10:28:21 for program PRIME
character#(#) string

write (4, 100) string

format(’'$’, a, x)

read (S, (il0)’) n

return

end

83




The other file, PRIMESUB.FOR, has been similarly com-
mented. The unformatted documentation file, PRIME.RND,
is now also on disk, and contains all the comments, module
locations, and cross-reference information,

IV. Other Tools

We are designing and writing other tools to work with
RNDOC to make R&D documentation easier. Generally, they
read RNDOC’s unformatted output and allow for code display
if it is needed. They are interactive, and their displays are
designed for a CRT. For the most part, these tools act as
interactive documents without producing printout. Their
functions include the foliowing:

(1) Module list; for each module in a program, lists the
name of the file where it resides, its comment, the
modules it calls, the modules that call it, its argu-
ments, and the common areas it hosts.

(2) Call tree: graphically displays which modules call
which for all the modules in a program.

(3) Comment editor: lets you change a particular com-
ment without rerunning RNDOC.

(4) Variable cross-reference: displays all lines of code in a
program where a particular variable occurs.

(5) Index searches: lets you look for a string or a word in
all the comments and symbol names of a program in
order to find some forgotten bit of information.

Here is an example of the use of such tools: suppose you
have seen an output error in a large program. Instead of look-
ing at the output routine to rediscover the name of the vari-
able that is at least a symptom of the problem, you remember
that it has something to do with “delay.” You do an index
search on “delay,” and discover five variables whose comments
contain that word. You probably recognize which one is the
one you want from the names and comments. Having settled
on ZDLY as the variable you are after, a variable cross-
reference search will show all the lines in all modules of the
program where ZDLY appears. You can use a general-purpose
editor to make the appropriate changes to the code, and see if

84

your solution worked. If it did you make changes to affected
comments using the comment-editing tool.

V. Portability

Portability has also influenced the design of RNDOC. It is
the main reason to read code and not listings — even though
listings have a lot of useful information in them — as listing
format changes from compiler to compiler.

RNDOC should be easy to run under any virtual memory
operating system that supports FORTRAN 77. For smaller
systems without virtual memory, the job will be harder but
not impossible. Basically, parameters governing the size of
arrays should be reduced, and the most space-consuming

" arrays changed to functions reading scratch direct-access files.

RNDOC’s response time will grow accordingly. As to host
language requirements, RNDOC and its family rely heavily on
the FORTRAN “character” data type, so versions of FOR-
TRAN which do not support it will not support these tools.

Structured FORTRAN code can be processed by RNDOC,
through each version of Structured FORTRAN must be tested
thoroughly to ensure that RNDOC understands its particular
methods of describing IF-structures and procedure calls.
RNDOC’s techniques could be used on other languages, such
as Pascal; that would require major changes in the parser,
and besides, excellent off-the-shelf Pascal Development Sys-
tems make such a program unnecessary.

VL. Current Work and Future Plans

The RNDOC project is currently working to improve the
processing of I/O references, to improve the portability to
systems smaller than the VAX, and to ensure upward compati- .
bility of current comments and unformatted files with future
versions of RNDOC.

Future versions of this software will include run-time flow
information and recognition of structured blocks of code
(DO-or IF-blocks). We are also continuing to try to find out
just what documentation R&D programmers and their main-
tenance and implementation heirs need to program more
effectively.




INITIALIZE: READ OLD
UNFORMATTED FILE

Y

GET THE NAME OF A

FILE THAT CONTAINS
SOME CODE

. -0

READ THE NEXT
LINE OF CODE

PROCESS THE LINE:

MODULE INFO:

(CALLS TO SUBROUTINES,
END STATEMENTS,
BEGINNINGS OF MODULES)

YARJABLE INFO:

(TYPE DECLARATIONS,
COMMON STATEMENTS,
ARITH. ASSIGNMENTS)

1/Q (READS AND WRITES)

WRITE NEW COPY
OF CODE IF REQUIRED

CONTINUE
DOCUMENTING
?

WRITE NEW

UNFORMATTED

lI?ECUMENTATION
E

(e.g., A
SUBROUTINE
STATEMENT)

RECORD CURRENT
FILENAME, DECOMPOSE
ARGUMENT LIST AND
PROCESS IT AS
VARIABLES, CHANGE

1S
THIS THE
FIRST STATEMENT
IN A NEW MODULE

MCURRENT"* MODULE [

1S
THERE A
COMMENT FOR THE
MODULE ALREADY,

?

(e.g,, A CALL
STATEMENT)

RECORD THAT THE
CURRENT MODULE

CALLS THE ONE
REFERRED TO

D A COMMENT
FOR IT (GET IT FROM
KEYBOARD)

Fig. 1. Block diagram of RNDOC and expansion of one block (simplified)

85




